

XEV Battery TechnologyRequirements and Advances

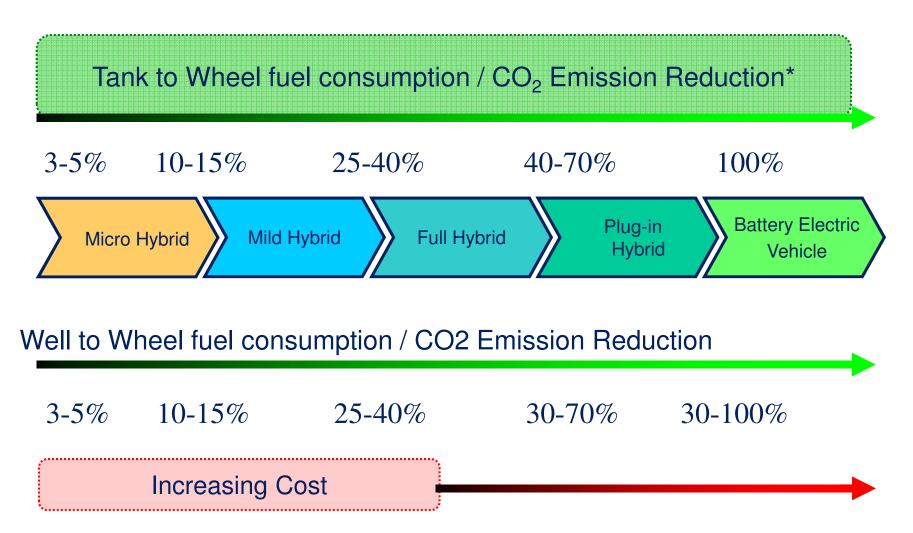
Menahem Anderman, President

Advanced Automotive Batteries

January 2015

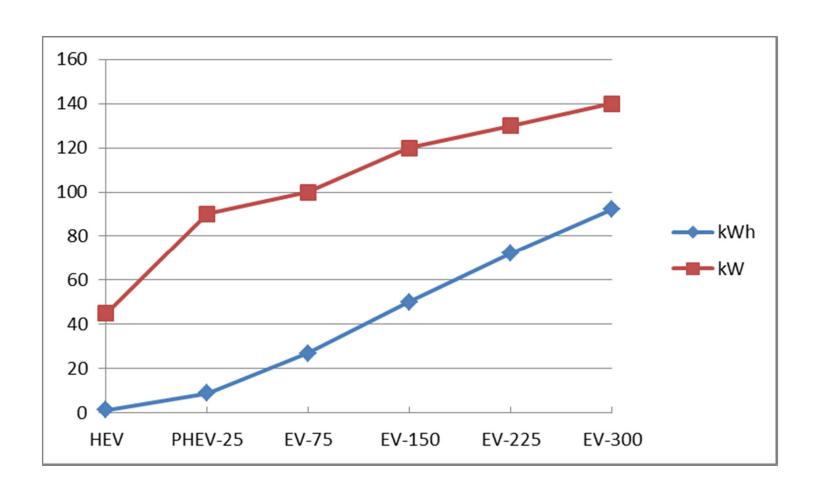
Web: www.advancedautobat.com

Email: menahem@advancedautobat.com

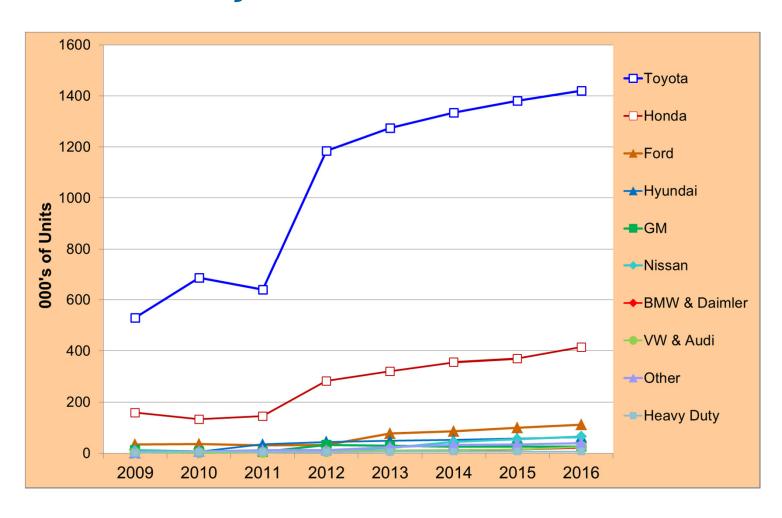


Presentation Outline

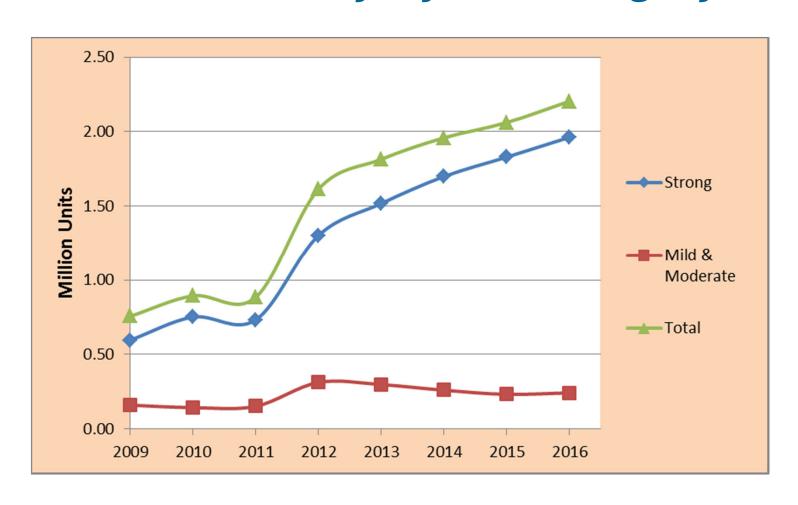
- Hybrid-Vehicle Technology and Market Trends
- Energy-Storage Solutions for
 - High-Voltage HEVs
 - Low-Voltage Systems
 - PHEVs
 - > EVs
 - Li-Ion xEV Battery Matrix
- xEV Battery Market



Powertrain Electrification



xEV Battery Power and Energy vs. Application



HEV Market by Vehicle Producer 2009 – 2016

HEV Market by Hybrid Category

Presentation Outline

- Hybrid-Vehicle Technology and Market Trends
- Energy-Storage Solutions for
 - High-Voltage HEVs
 - Low-Voltage Systems
 - PHEVs
 - EVs
 - Li-Ion xEV Battery Matrix
- xEV Battery Market

Li Ion for High-Voltage HEVs – Future

> The main opportunities are in:

- Improving low-temperature power and reducing power fade to bring the level of oversize down to reduce cost
- Improving power and DOD range to reduce size and cost
- Simplifying electronics and cooling to reduce cost
- Proving life and reliability same or superior to those of NiMH, to reduce risk and warranty cost

Li-Ion for Low-Voltage Systems

- At least 4 configurations with varied energy-storage requirements
 - Micro 1 and 2 at 14V nominal
 - Mild 1 and 2 at 48V nominal
- Most solutions for micro 2 and mild systems consist of two energystorage devices
 - Balance of loads
- Design driver varies by application and solution
 - Low-temperature power
 - Charge acceptance
 - Voltage compatibility
 - Cyclability
 - High-temperature tolerance
- Cost of pack beyond cells and power electronics is a major challenge

Presentation Outline

- Hybrid-Vehicle Technology and Market Trends
- Energy-Storage Solutions for
 - High-Voltage HEVs
 - Low-Voltage Systems
 - > PHEVs
 - > EVs
 - Li-Ion xEV Battery Matrix
- xEV Battery Market

PHEV Battery Technology

Seven years into the current wave of development, there are still major cell design variations...

- Cell packaging
 - Metal can versus pouch
- Cathode Chemistry
 - NMC, LFP, NMC+LMO blend
- Cell assembly
 - Stacked, spirally wound, or semi-wound?
- Power level kW/kWh
 - Depends on vehicle power/range ratio

PHEV Cells on the Market 2014

Cell Maker	Chemistry	Vehicle	Capacity	Configuration	Voltage	Weight	Spec Ener	
	Cathode		Ah		V	Kg	Wh/kg	
LG	LMO-NMC	Volt	15	Pouch	3.7	0.39	142	
Panasonic	NMC	Prius	22	Prismatic	3.68	0.73	112	
Panasonic	NMC	C-Max	25	Prismatic	3.68	0.75	123	
Samsung	NMC-LMO	Porches	25	Prismatic	3.7	0.721	128	
LEJ	LMO-NMC	Outlander	40	Prismatic	3.7	1.35	110	
LEJ	LFP	Daimler	21	prismatic	3.3	0.64	108	

PHEV Battery Technology Roadmap

- The key matrix is increasing usable energy density while reducing cost per unit of usable energy, without sacrificing safety and life
- NMC and LFP graphite chemistry promise to deliver 4,000+ cycles at 70-75% SOC swing
- Producers are aiming to raise specific energy at the cell level (for NMC) from 125 to 160+ Wh/kg with no sacrifice in safety or life
- \$200/kWh by 2020 cell level is being discussed

Current EV Cells

	Cell Maker	Chemistry	Capacity	Configuration	Voltage	Weight	Volume	Ener dens	Spec Ener	Used in:	
		Anode/Cathode	Ah		V	Kg	liter	Wh/liter	Wh/kg	Company	Model
1	AESC	G/LMO-NCA	33	Pouch	3.75	0.80	0.40	309	155	Nissan	Leaf
2	LG Chem	G/NMC-LMO	36	Pouch	3.75	0.86	0.49	275	157	Renault	Zoe
3	Li-Tec	G/NMC	52	Pouch	3.65	1.25	0.60	316	152	Daimler	Smart
4	Li Energy Japan	G/LMO-NMC	50	Prismatic	3.7	1.70	0.85	218	109	Mitsubishi	i-MiEV
5	Samsung	G/NMC-LMO	64	Prismatic	3.7	1.80	0.97	243	132	Fiat	500
6	Lishen Tianjin	G-LFP	16	Prismatic	3.25	0.45	0.23	226	116	Coda	EV
7	Toshiba	LTO-NMC	20	Prismatic	2.3	0.52	0.23	200	89	Honda	Fit
8	Panasonic	G/NCA	3.1	Cylindrical	3.6	0.045	0.018	630	248	Tesla	Model S

EV Battery Technology Roadmap

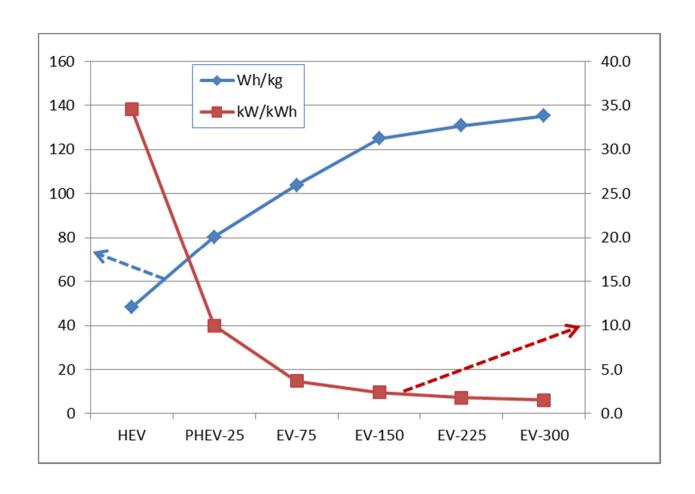
- For a 20-25 kWh battery, the targets are 180Wh/kg and \$250/kWh (pack level) for 2020, but life and safety are to be confirmed for more aggressive designs
- For larger packs, lower power level and cycle life requirements make achieving above targets more likely
- Even higher specific energy will require higher-voltage, higher-capacity cathodes, and some silicon in the anode; this proposition is for after 2020
- Carmakers should not include Li Air or Li Sulfur in their 12-year plan

EV & PHEV Battery Technology Roadmap

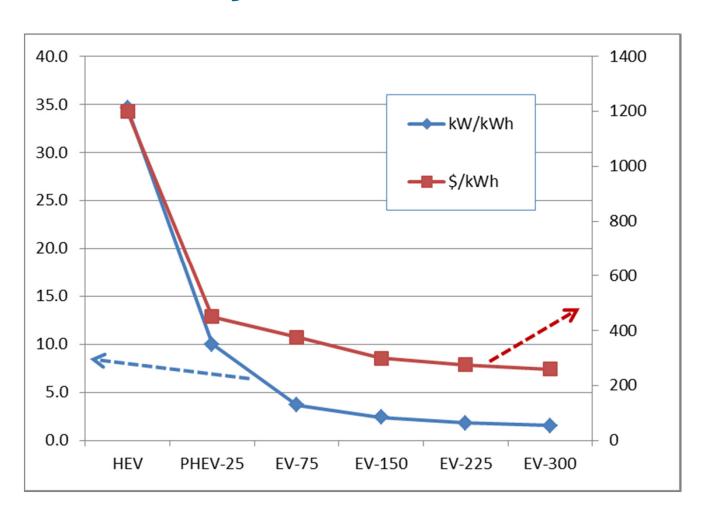
COST

- > \$ per kWh for EV and PHEV cells versus calendar life and production volume.
- Realistic pricing versus future pricing/buy in
- Cell % in EV and PHEV packs
- Will lower Power/energy cell be much more economical, will that justify going to larger range
- Material cell or pack making in China?

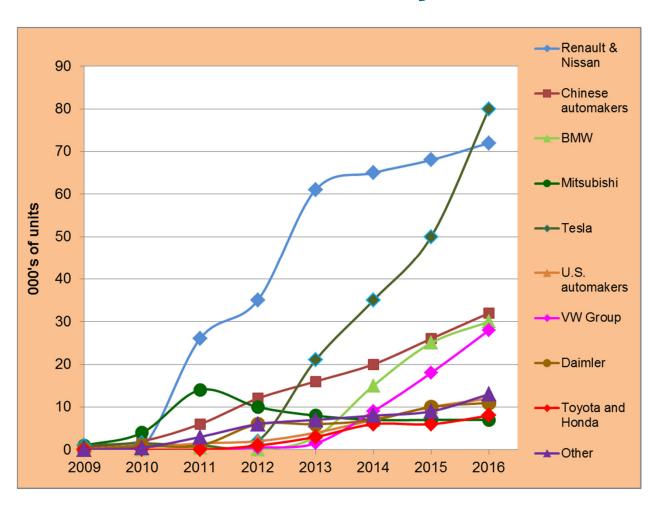
Safety


- Is abuse tolerance at the cell level absolutely necessary?
- Avoiding fire propagation
- What is the right internal short-circuit test?
- What is realistic crush protection?
- What level of overcharge at cell level?
- Influence of max cell voltage?
- Influence of cooling and temperature control?

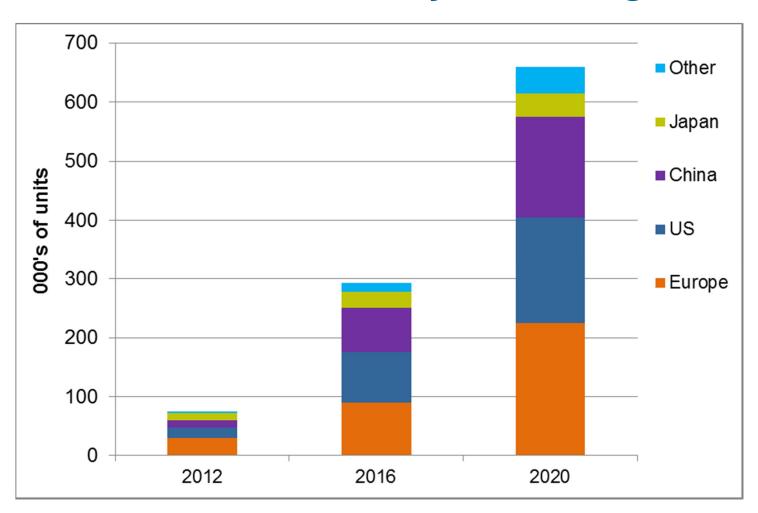
Presentation Outline


- Hybrid-Vehicle Technology and Market Trends
- Energy-Storage Solutions for
 - High-Voltage HEVs
 - Low-Voltage Systems
 - PHEVs
 - EVs
 - Li-lon xEV Battery Matrix
- xEV Battery Market

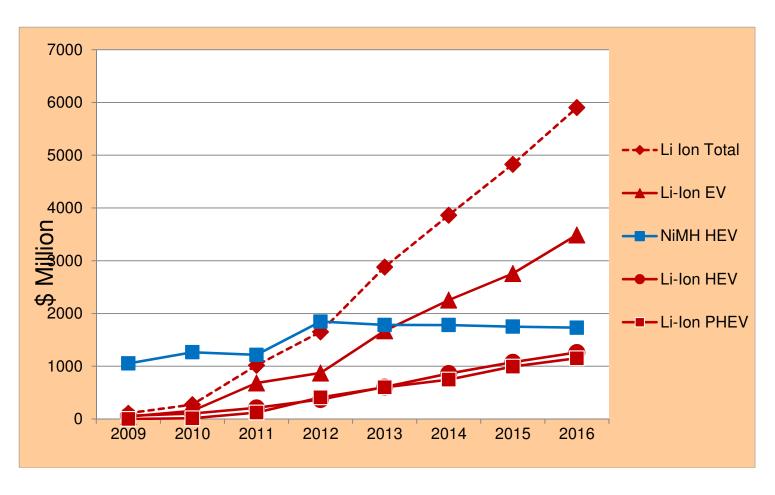
xEV Energy Density vs. Power Level



xEV Battery Cost vs. Power Level



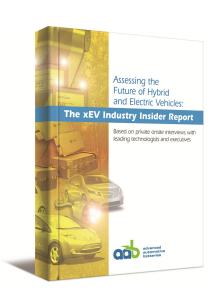
EV Market Forecast by Producer


EV Market Forecast by World Region

Combined xEV Battery Pack Business

(excluding micro hybrids)

advanced automotive batteries


Conclusions

- Lithium Ion is the preferred energy-storage solution for most xEV architectures
- For the high-voltage systems, there is no competition in sight inside the next 10-12 years
- Design driver varies between applications
 - For high-voltage HEVs, reducing power fade and increasing power at low temperature
 - For low-voltage HEVs, improving charge acceptance and low temperature power and reducing pack-related complexity/cost
 - For PHEVs, increasing usable energy over 10 years of life
 - For EVs, improving energy density and calendar life at full SOC
- To reduce the cost of materials, cell, and pack is the common design matrix for all applications

For more information

☐ The x-EV Industry Insider Report Assessing the Future of Hybrid and Electric Vehicles

KEY TOPICS

- HEV market direction
- Future technology and market positions of automotive Pb-Acid and NiMH batteries and ultracapacitors
- Performance, cost, durability, and safety factors for automotive Li-lon batteries
- Vehicle- and battery-market projections

2015 edition available in April

☐ The Tesla Battery Report

Available now

AABC 2015 * June 15-19 * Detroit

advanced automotive & industrial/stationary battery conference

Detroit Marriott at the Renaissance Center, Detroit, Michigan

signature sponsor

host sponsor

NEW THIS YEAR!

- > **AISTAM**, a new symposium on the emerging market for advanced batteries in utility, telecom, and industrial applications
- > LLIBTA tracks will feature unique sessions:
 - Battery R&D program managers from government agencies and national labs provide overviews of R&D in their agencies
 - Poster +8 sessions with short presentations on key topics by principal investigators
- Six specialized battery engineering areas will be included in the Li-lon engineering track
- **Exhibit+8** option offering exhibitors an opportunity to introduce relevant technical products
- **Poster+8** session: an 8-minute presentation slot for selected poster presenters
- > **OEM battery pavilion** in the exhibit hall with mockups of the latest xEVs' batteries